

Welcome to tempsdb’s documentation!

Contents:

	How this does work?

	Usage

	Exceptions

	Chunk

	Variable length series
	How does it work?

	Accessing them

	Integration with Satella’s MemoryPressureManager

This is an append-only embedded time series library written in Cython.

It tries to use mmap for reads and writes, and in general is as zero-copy as possible (ie. the
only time data is unserialized is when a particular entry is read). It also uses
iterators.

Stored time series with a 8-bit timestamp and a fixed length of data.
So no variable encoding for you!

New in version 0.2.

When mmap fails due to memory issues, this falls back to slower fwrite()/fread() implementation.
You can also manually select the descriptor-based implementation if you want to.

Indices and tables

	Index

	Module Index

	Search Page

How this does work?

Note

This is about fixed length data time series.

Data is stored in so called chunks. A chunk’s last page can be actively appended to, or a chunk
is immutable.

When there is a request to fetch some data, a chunk is loaded into memory. It will not
be automatically unloaded, to do this, you must periodically call
close_chunks().

Usage

Start off by instantiating an object

	
class tempsdb.database.Database(unicode path: str)

	A basic TempsDB object.

After you’re done with it, please call
close().

If you forget to, the destructor will do that instead and emit a warning.

	Parameters

	path – path to the directory with the database

	Raises

	DoesNotExist – database does not exist, use create_database

	Variables

	path – path to the directory with the database (str)

	
close(self) → int

	Close this TempsDB database

	
close_all_open_series(self) → int

	Closes all open series

	
create_series(self, unicode name, int block_size, unsigned long entries_per_chunk, int page_size=4096, bool use_descriptor_based_access=False) → TimeSeries

	Create a new series

	Parameters

	
	name – name of the series

	block_size – size of the data field

	entries_per_chunk – entries per chunk file

	page_size – size of a single page. Default is 4096

	use_descriptor_based_access – whether to use descriptor based access instead of mmap.
Default is False

	Returns

	new series

	Raises

	
	ValueError – block size was larger than page_size plus a timestamp

	AlreadyExists – series with given name already exists

	
create_varlen_series(self, unicode name, list length_profile, int size_struct, unsigned long entries_per_chunk) → VarlenSeries

	Create a new variable length series

	Parameters

	
	name – name of the series

	length_profile – list of lengths of subsequent chunks

	size_struct – how many bytes will be used to store length?
Valid entries are 1, 2 and 4

	entries_per_chunk – entries per chunk file

	Returns

	new variable length series

	Raises

	AlreadyExists – series with given name already exists

	
get_all_series(self) → list

	Stream all series available within this database

	Returns

	a list of series names

	Return type

	tp.List[str]

	
get_first_entry_for(self, unicode name) → unsigned long long

	Get first timestamp stored in a particular series without opening it

	Parameters

	name – series name

	Returns

	first timestamp stored in this series

	Raises

	
	DoesNotExist – series does not exist

	ValueError – timestamp does not have any data

	
get_open_series(self) → list

	Return all open series

	Returns

	open series

	Return type

	tp.List[TimeSeries]

	
get_series(self, unicode name: str, bool use_descriptor_based_access=False) → TimeSeries

	Load and return an existing series

	Parameters

	
	name – name of the series

	use_descriptor_based_access – whether to use descriptor based access instead of mmap,
default is False

	Returns

	a loaded time series

	Raises

	DoesNotExist – series does not exist

	
get_varlen_series(self, unicode name) → VarlenSeries

	Load and return an existing variable length series

	Parameters

	name – name of the series

	Returns

	a loaded varlen series

	Raises

	DoesNotExist – series does not exist

	
register_memory_pressure_manager(self, mpm) → int

	Register a satella MemoryPressureManager [https://satella.readthedocs.io/en/latest/instrumentation/memory.html] to close chunks if low on memory.

	Parameters

	mpm (satella.instrumentation.memory.MemoryPressureManager) – MemoryPressureManager to use

	
sync(self) → int

	Synchronize all the data with the disk

You can create new databases via

	
tempsdb.database.create_database(unicode path) → Database

	Creates a new, empty database

	Parameters

	path – path where the DB directory will be put

	Returns

	a Database object

	Raises

	AlreadyExists – the directory exists

Then you can create and retrieve particular series:

	
class tempsdb.series.TimeSeries(unicode path: str, unicode name: str, use_descriptor_based_access: bool = False)

	A single time series. This maps each timestamp (unsigned long long) to a block of data
of length block_size.

When you’re done with this, please call
close().

If you forget to, the destructor will do that instead, and a warning will be emitted.

	Variables

	
	last_entry_ts – timestamp of the last entry added or 0 if no entries yet (int)

	last_entry_synced – timestamp of the last synchronized entry (int)

	block_size – size of the writable block of data (int)

	path – path to the directory containing the series (str)

	descriptor_based_access – are all chunks using descriptor-based access? (bool)

	name – name of the series (str)

	metadata – extra data (tp.Optional[dict])

	
append(self, unsigned long long timestamp, bytes data) → int

	Append an entry.

	Parameters

	
	timestamp – timestamp, must be larger than current last_entry_ts

	data – data to write

	Raises

	
	ValueError – Timestamp not larger than previous timestamp or invalid block size

	InvalidState – the resource is closed

	
append_padded(self, unsigned long long timestamp, bytes data) → int

	Same as append() but will accept data shorter
than block_size.

It will be padded with zeros.

	Parameters

	
	timestamp – timestamp, must be larger than current last_entry_ts

	data – data to write

	Raises

	
	ValueError – Timestamp not larger than previous timestamp or invalid block size

	InvalidState – the resource is closed

	
close(self) → int

	Close the series.

No further operations can be executed on it afterwards.

	
close_chunks(self) → int

	Close all chunks opened by read requests that are not referred to anymore.

No-op if closed.

	
delete(self) → int

	Erase this series from the disk. Series must be opened to do that.

	Raises

	InvalidState – series is not opened

	
disable_mmap(self) → int

	Switches to descriptor-based file access method for the entire series,
and all chunks open inside.

	
enable_mmap(self) → int

	Switches to mmap-based file access method for the entire series,
and all chunks open inside.

This will try to enable mmap on every chunk, but if mmap fails due to recoverable
errors, it will remain in descriptor-based mode.

	Raises

	Corruption – mmap failed due to an irrecoverable error

	
get_current_value(self) → tuple

	Return latest value of this series

	Returns

	tuple of (timestamp, value)

	Return type

	tp.Tuple[int, bytes]

	Raises

	ValueError – series has no data

	
iterate_range(self, unsigned long long start, unsigned long long stop) → Iterator

	Return an iterator through collected data with given timestamps.

	Parameters

	
	start – timestamp to start at

	stop – timestamp to stop at

	Returns

	an iterator with the data

	Raises

	ValueError – start larger than stop

	
mark_synced_up_to(self, unsigned long long timestamp) → int

	Mark the series as synced up to particular timestamp.

This will additionally sync the metadata.

	Parameters

	timestamp – timestamp of the last synced entry

	
open_chunks_mmap_size(self) → unsigned long

	Calculate how much RAM does the mmaped space take

	Returns

	how much RAM, in bytes, do the opened chunks consume?

	
set_metadata(self, dict new_meta) → int

	Set a new value for the metadata property.

This writes the disk.

	Parameters

	new_meta – new value of metadata property

	
sync(self) → int

	Synchronize the data kept in the memory with these kept on disk

	Raises

	InvalidState – the resource is closed

	
trim(self, unsigned long long timestamp) → int

	Delete all entries earlier than timestamp that are closed.

Note that this will drop entire chunks, so it may be possible that some entries will linger
on.

This will affect only closed chunks. Chunks ready to delete that are closed after
this will not be deleted, as trim() will need
to be called again.

	Parameters

	timestamp – timestamp to delete entries earlier than

You retrieve their data via Iterators:

	
class tempsdb.iterators.Iterator(TimeSeries parent: TimeSeries, start: int, stop: int, chunks: tp.List[Chunk])

	Iterator that allows iterating through result.

Can be used as a context manager:

>>> with series.iterate_range(0, 5000) as it:
>>> for timestamp, value in it:
>>> ...

It will close itself automatically via destructor, if you forget to call close.

At most basic this implements an iterator interface, iterating over
tp.Tuple[int, bytes] - timestamp and data

When you’re done call close() to release the resources.

A warning will be emitted in the case that destructor has to call
close().

	
close(self) → int

	Close this iterator, release chunks.

It is imperative that you call this, otherwise some chunks might remain in memory.

This is hooked by destructor, but release it manually ASAP.

No-op if iterator is already closed.

	
next_item(self) → tuple

	Return next element or None, if list was exhausted

	Returns

	next element

	Return type

	tp.Optional[tp.Tuple[int, bytes]]

Appending the data is done via append(). Since time series are
allocated in entire pages, so your files will be padded to a page in size. This makes writes
quite fast, as in 99.9% cases it is just a memory operation.

Exceptions

The base TempsDB exception is

	
class tempsdb.exceptions.TempsDBError

	Base class for TempsDB errors

The exceptions that inherit from it are:

	
class tempsdb.exceptions.DoesNotExist

	The required resource does not exist

	
class tempsdb.exceptions.Corruption

	Corruption was detected in the dataset

	
class tempsdb.exceptions.InvalidState

	An attempt was made to write to a resource that’s closed

	
class tempsdb.exceptions.AlreadyExists

	Provided object already exists

	
class tempsdb.exceptions.StillOpen

	This resource has outstanding references and cannot be closed

Chunk

For your convenience the class Chunk was also documented, but don’t use
it directly:

	
class tempsdb.chunks.Chunk(parent: tp.Optional[TimeSeries], unicode path: str, page_size: int, use_descriptor_access: bool = False)

	Represents a single chunk of time series.

This also implements an iterator interface, and will iterate with tp.Tuple[int, bytes],
as well as a sequence protocol.

This will try to mmap opened files, but if mmap fails due to not enough memory this
will use descriptor-based access.

	Parameters

	
	parent – parent time series

	path – path to the chunk file

	use_descriptor_access – whether to use descriptor based access instead of mmap

	Variables

	
	path – path to the chunk (str)

	min_ts – timestamp of the first entry stored (int)

	max_ts – timestamp of the last entry stored (int)

	block_size – size of the data entries (int)

	entries – amount of entries in this chunk (int)

	page_size – size of the page (int)

	
append(self, unsigned long long timestamp, bytes data) → int

	Append a record to this chunk.

Might range from very fast (just a memory operation) to quite slow (adding a new page
to the file).

Simultaneous writing is not thread-safe.

Timestamp and data is not checked for, this is supposed to be handled by
TimeSeries.

	Parameters

	
	timestamp – timestamp of the entry

	data – data to write

	Raises

	InvalidState – chunk is closed

	
close(self, bool force=False) → int

	Close the chunk and close the allocated resources

	Parameters

	force – whether to close the chunk even if it’s open somewhere

	Raises

	StillOpen – this chunk has a parent attached and the parent
says that this chunk is still being referred to

	
delete(self) → int

	Close and delete this chunk.

	
find_left(self, unsigned long long timestamp) → unsigned int

	Return an index i of position such that ts[i] <= timestamp and
(timestamp-ts[i]) -> min.

Used as bound in searches: you start from this index and finish at
find_right().

	Parameters

	timestamp – timestamp to look for, must be smaller or equal to largest element
in the chunk

	Returns

	index such that ts[i] <= timestamp and (timestamp-ts[i]) -> min, or length of the
array if timestamp is larger than largest element in this chunk

	
find_right(self, unsigned long long timestamp) → unsigned int

	Return an index i of position such that ts[i] > timestamp and
(ts[i]-timestamp) -> min

Used as bound in searches: you start from
find_right() and finish at this inclusive.

	Parameters

	timestamp – timestamp to look for

	Returns

	index such that ts[i] > timestamp and (ts[i]-timestamp) -> min

	
get_byte_of_piece(self, unsigned int index, int byte_index) → int

	Return a particular byte of given element at given index.

When index is negative, or larger than block_size, the behaviour is undefined

	Parameters

	
	index – index of the element

	byte_index – index of the byte

	Returns

	value of the byte

	Raises

	ValueError – index too large

	
get_mmap_size(self) → unsigned long

	
	Returns

	how many bytes are mmaped?

	Return type

	int

	
get_slice_of_piece_at(self, unsigned int index, int start, int stop) → bytes

	Return a slice of data from given element

	Parameters

	
	index – index of the element

	start – starting offset of data

	stop – stopping offset of data

	Returns

	a byte slice

	
get_slice_of_piece_starting_at(self, unsigned int index, int start) → bytes

	Return a slice of data from given element starting at given index to the end

	Parameters

	
	index – index of the element

	start – starting index

	Returns

	a byte slice

	
get_timestamp_at(self, unsigned int index) → unsigned long long

	Return a timestamp at a particular location

Passing an invalid index will result in an undefined behaviour.

	Parameters

	index – index of element

	Returns

	the timestamp

	
get_value_at(self, unsigned int index) → bytes

	Return only the value at a particular index, numbered from 0

	Returns

	value at given index

	
iterate_indices(self, unsigned long starting_entry, unsigned long stopping_entry)

	Return a partial iterator starting at starting_entry and ending at stopping_entry (exclusive).

	Parameters

	
	starting_entry – index of starting entry

	stopping_entry – index of stopping entry

	Returns

	an iterator

	Return type

	tp.Iterator[tp.Tuple[int, bytes]]

	
switch_to_descriptor_based_access(self) → int

	Switch self to descriptor-based access instead of mmap.

No-op if already in descriptor based mode.

	
switch_to_mmap_based_access(self) → int

	Switch self to mmap-based access instead of descriptor-based.

No-op if already in mmap mode.

	Raises

	Corruption – unable to mmap file due to an unrecoverable error

Data stored in files is little endian.

A file storing a chunk consists as follows:

	4 bytes unsigned int - block size

	
	repeated
	
	8 bytes unsigned long long - timestamp

	block_size bytes of data

It’s padded to page_size with zeros, and four last bytes is the unsigned long amount of entries

Variable length series

New in version 0.5.

How does it work?

They work by breaking down your data into smaller pieces and storing them in separate
series, prefixing with length.

For each series you specify so-called length profile. It is a list of ints, each representing
a block size for next series created. If an entry cannot fit in the already created series, a new one
will be created. Note that the last entry of this array will loop forever, so if you for example
put a 1024 byte data in a varlen series of length profile [10, 255] there will be a total
of 5 normal time series created to accommodate it, with length of:
* 10
* 255
* 255
* 255
* 255

Note that an entry is written to enough series so that it fits. For example, a 8 byte piece of data
would be written to only to the first series.

Each entry is also prefixed by it’s length, so the actual size of the first
series is larger by that. The size of that field is described by an
extra parameter called size_struct. It represents an unsigned number.

Note that the only valid sizes of size_struct are:
* 1 for maximum length of 255
* 2 for maximum length of 65535
* 3 for maximum length of 16777215
* 4 for maximum length of 4294967295

Also note that variable length series live in a different namespace than standard
time series, so you can name them the same.

Accessing them

Use methods tempsdb.database.Database.create_varlen_series() and
tempsdb.database.Database.get_varlen_series() to obtain instances of following class:

	
class tempsdb.varlen.VarlenSeries(unicode path: str, unicode name: str)

	A time series housing variable length data.

It does that by splitting the data into chunks and encoding them in multiple
series.

	Parameters

	
	path – path to directory containing the series

	name – name of the series

	
append(self, unsigned long long timestamp, bytes data) → int

	Append an entry to the series

	Parameters

	
	timestamp – timestamp to append it with

	data – data to write

	Raises

	ValueError – too long an entry

	
close(self) → int

	Close this series.

No-op if already closed.

	Raises

	StillOpen – some references are being held

	
delete(self) → int

	Erases this variable length series from the disk.

Closes this series as a side-effect.

	
get_maximum_length(self) → long long

	
	Returns

	maximum length of an element capable of being stored in this series

	
iterate_range(self, unsigned long long start, unsigned long long stop, bool direct_bytes=False) → VarlenIterator

	Return an iterator with the data

	
last_entry_synced

	
	Returns

	timestamp of the last entry synchronized. Starting value is 0

	
mark_synced_up_to(self, unsigned long long timestamp) → int

	Mark the series as synchronized up to particular period

	Parameters

	timestamp – timestamp of synchronization

	
trim(self, unsigned long long timestamp) → int

	Try to delete all entries younger than timestamp

	Parameters

	timestamp – timestamp that separates alive entries from the dead

	
class tempsdb.varlen.VarlenIterator(VarlenSeries parent: VarlenSeries, start: int, stop: int, direct_bytes: bool = False)

	A result of a varlen series query.

This iterator will close itself when completed. If you break out of it’s
iteration, please close it youself via
close()

If you forget to do that, a warning will be issued and the destructor will
close it automatically.

	Parameters

	
	parent – parent series

	start – started series

	stop – stopped series

	direct_bytes – whether to iterate with bytes values instead of
VarlenEntry. Note that setting this to True
will result in a performance drop, since it will copy, but it should
be faster if your typical entry is less than 20 bytes.

	
close(self) → int

	Close this iterator and release all the resources

No-op if already closed.

	
get_next(self) → VarlenEntry

	Return next element of the iterator, or None if no more available.

	
class tempsdb.varlen.VarlenEntry(VarlenSeries parent: VarlenSeries, chunks: tp.List[Chunk], item_no: tp.List[int])

	An object representing the value.

It is preferred for an proxy to exist, instead of copying data.
This serves make tempsdb far more zero-copy, but it’s worth it only if your
values are routinely longer than 20-40 bytes.

This behaves as a bytes object, in particular it can be sliced, iterated,
and it’s length obtained. It also overloads __bytes__. It’s also directly comparable
and hashable, and boolable.

This acquires a reference to the chunk it refers, and releases it upon destruction.

Once to_bytes() is called, it’s result will be
cached.

	
close(self) → int

	Close this object and release all the references.

It is not necessary to call, since the destructor will call this.
.. warning:: Do not let your VarlenEntries outlive the iterator itself!

It will be impossible to close the iterator.

	
endswith(self, bytes v) → bool

	Check whether this sequence ends with provided bytes.

This will run faster than bytes(v).endswith(b’test’) since it will
fetch only the required amount of bytes.

	Parameters

	v – bytes to check

	Returns

	whether the sequence ends with provided bytes

	
get_byte_at(self, int index) → int

	Return a byte at a particular index

	Parameters

	index – index of the byte

	Returns

	the value of the byte

	Raises

	ValueError – index too large

	
length(self) → int

	
	Returns

	self length

	
slice(self, int start, int stop) → bytes

	Returns a slice of the entry

	Parameters

	
	start – position to start at

	stop – position to stop at

	Returns

	a slice of this entry

	Raises

	ValueError – stop was smaller than start or indices were invalid

	
startswith(self, bytes v) → bool

	Check whether this sequence starts with provided bytes.

This will run faster than bytes(v).startswith(b’test’) since it will
fetch only the required amount of bytes.

	Parameters

	v – bytes to check

	Returns

	whether the sequence starts with provided bytes

	
timestamp(self) → unsigned long long

	
	Returns

	timestamp assigned to this entry

	
to_bytes(self) → bytes

	
	Returns

	value as bytes

Integration with Satella’s MemoryPressureManager

This library integrates itself with Satella [https://github.com/piotrmaslanka/satella] MemoryPressureManager [https://satella.readthedocs.io/en/latest/instrumentation/memory.html].

It will close the non-required chunks when remaining in severity 1 each 30 seconds.

To attach a MPM to a database, use
tempsdb.database.Database.register_memory_pressure_manager().

Series will automatically inherit the parent database’s MemoryPressureManager.

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | R
 | S
 | T
 | V

A

 	
 	AlreadyExists (class in tempsdb.exceptions)

 	append() (tempsdb.chunks.Chunk method)

 	(tempsdb.series.TimeSeries method)

 	(tempsdb.varlen.VarlenSeries method)

 	
 	append_padded() (tempsdb.series.TimeSeries method)

C

 	
 	Chunk (class in tempsdb.chunks)

 	close() (tempsdb.chunks.Chunk method)

 	(tempsdb.database.Database method)

 	(tempsdb.iterators.Iterator method)

 	(tempsdb.series.TimeSeries method)

 	(tempsdb.varlen.VarlenEntry method)

 	(tempsdb.varlen.VarlenIterator method)

 	(tempsdb.varlen.VarlenSeries method)

 	
 	close_all_open_series() (tempsdb.database.Database method)

 	close_chunks() (tempsdb.series.TimeSeries method)

 	Corruption (class in tempsdb.exceptions)

 	create_database() (in module tempsdb.database)

 	create_series() (tempsdb.database.Database method)

 	create_varlen_series() (tempsdb.database.Database method)

D

 	
 	Database (class in tempsdb.database)

 	delete() (tempsdb.chunks.Chunk method)

 	(tempsdb.series.TimeSeries method)

 	(tempsdb.varlen.VarlenSeries method)

 	
 	disable_mmap() (tempsdb.series.TimeSeries method)

 	DoesNotExist (class in tempsdb.exceptions)

E

 	
 	enable_mmap() (tempsdb.series.TimeSeries method)

 	
 	endswith() (tempsdb.varlen.VarlenEntry method)

F

 	
 	find_left() (tempsdb.chunks.Chunk method)

 	
 	find_right() (tempsdb.chunks.Chunk method)

G

 	
 	get_all_series() (tempsdb.database.Database method)

 	get_byte_at() (tempsdb.varlen.VarlenEntry method)

 	get_byte_of_piece() (tempsdb.chunks.Chunk method)

 	get_current_value() (tempsdb.series.TimeSeries method)

 	get_first_entry_for() (tempsdb.database.Database method)

 	get_maximum_length() (tempsdb.varlen.VarlenSeries method)

 	get_mmap_size() (tempsdb.chunks.Chunk method)

 	
 	get_next() (tempsdb.varlen.VarlenIterator method)

 	get_open_series() (tempsdb.database.Database method)

 	get_series() (tempsdb.database.Database method)

 	get_slice_of_piece_at() (tempsdb.chunks.Chunk method)

 	get_slice_of_piece_starting_at() (tempsdb.chunks.Chunk method)

 	get_timestamp_at() (tempsdb.chunks.Chunk method)

 	get_value_at() (tempsdb.chunks.Chunk method)

 	get_varlen_series() (tempsdb.database.Database method)

I

 	
 	InvalidState (class in tempsdb.exceptions)

 	iterate_indices() (tempsdb.chunks.Chunk method)

 	
 	iterate_range() (tempsdb.series.TimeSeries method)

 	(tempsdb.varlen.VarlenSeries method)

 	Iterator (class in tempsdb.iterators)

L

 	
 	last_entry_synced (tempsdb.varlen.VarlenSeries attribute)

 	
 	length() (tempsdb.varlen.VarlenEntry method)

M

 	
 	mark_synced_up_to() (tempsdb.series.TimeSeries method)

 	(tempsdb.varlen.VarlenSeries method)

N

 	
 	next_item() (tempsdb.iterators.Iterator method)

O

 	
 	open_chunks_mmap_size() (tempsdb.series.TimeSeries method)

R

 	
 	register_memory_pressure_manager() (tempsdb.database.Database method)

S

 	
 	set_metadata() (tempsdb.series.TimeSeries method)

 	slice() (tempsdb.varlen.VarlenEntry method)

 	startswith() (tempsdb.varlen.VarlenEntry method)

 	StillOpen (class in tempsdb.exceptions)

 	
 	switch_to_descriptor_based_access() (tempsdb.chunks.Chunk method)

 	switch_to_mmap_based_access() (tempsdb.chunks.Chunk method)

 	sync() (tempsdb.database.Database method)

 	(tempsdb.series.TimeSeries method)

T

 	
 	TempsDBError (class in tempsdb.exceptions)

 	TimeSeries (class in tempsdb.series)

 	timestamp() (tempsdb.varlen.VarlenEntry method)

 	
 	to_bytes() (tempsdb.varlen.VarlenEntry method)

 	trim() (tempsdb.series.TimeSeries method)

 	(tempsdb.varlen.VarlenSeries method)

V

 	
 	VarlenEntry (class in tempsdb.varlen)

 	
 	VarlenIterator (class in tempsdb.varlen)

 	VarlenSeries (class in tempsdb.varlen)

 nav.xhtml

 Table of Contents

 		
 Welcome to tempsdb’s documentation!

 		
 How this does work?

 		
 Usage

 		
 Exceptions

 		
 Chunk

 		
 Variable length series

 		
 How does it work?

 		
 Accessing them

 		
 Integration with Satella’s MemoryPressureManager

_static/minus.png

_static/plus.png

_static/file.png

